логотип Сталь-Штапм
Введение

Раздел первый
Технология холодной листовой штамповки

Глава I. Разделительные операции
1. Резка листового металла ножницами
2. Усилие резания листового металла ножницами
3. Резка листового металла штампами
4. Усилие резания при вырубке и пробивке
5. Зазоры между матрицей и пуансоном
6. Чистовая вырубка, пробивка и отрезка
7. Зачистная штамповка
8. Вырезка резиной и полиуретаном
9. Обрезка полых деталей

Глава II. Гибка
10. Процесс гибки листового металла
11. Нейтральный слой
12. Величина деформаций и минимально допустимые радиусы гибки
13. Определение размеров заготовок при гибке
14. Упругое пружинение при гибке
15. Изгиб с растяжением
16. Изгибающие моменты и усилия гибки
17. Конструктивно-технологические элементы при гибке
18. Изгиб труб и тонкостенных профилей

Глава III. Вытяжка
19. Процесс вытяжки листовых металлов
20. Определение размеров и формы заготовок при вытяжке
21. Технологические расчеты при вытяжке и построение технологического процесса
22. Определение усилий вытяжки и прижима
23. Работа и скорость вытяжки
24. Радиусы закруглений и зазоры при вытяжке
25. Смазка при вытяжке
26. Наклеп металла и отжиг при вытяжке
27. Особые способы вытяжки
28. Вытяжка тугоплавких металлов и сплавов

Глава IV. Листовая формовка
29. Рельефная формовка
30. Отбортовка
31. Растяжка (раздача)
32. Обжимка
33. Правка и чеканка
34. Холодное выдавливание листового металла

Глава V. Штамповка неметаллических материалов
35. Основные виды неметаллических материалов, применяемых в холодной штамповке
36. Реака и вырубка деталей из неметаллических материалов
37. Гибка неметаллических материалов
38. Вытяжка и формовка неметаллических материалов

Глава VI. Особые виды обработки листовых металлов давлением
39. Импульсные высокоскоростные методы штамповки
40. Профилирование полосового и листового металла
41. Ротационное выдавливание (давильные и раскатные процессы)
42. Накатные и кромкогибочные операции

Раздел второй
Основы разработки технологических процессов холодной листовой штамповки

Глава I. Технологичность листовых штампованных деталей
1. Технологические требования к конструкции штампованных деталей
2. методы повышения технологических листовых штампуемых деталей и пути экономии металла

Глава II. Разработка технологических процессов холодной листовой штамповки
3. Содержание и порядок разработки технологических процессов
4. Раскрой материала и величина перемычек
5. Основы построения технологических процессов холодной листовой штамповки
6. Технологические процессы и штампы, применяемые в мелкосерийном производстве
7. Точность штампованных листовых деталей

Глава III. Выбор прессового оборудования
8. Основные принципы и параметры для выбора пресса
9. Регулировка прессов и закрытая высота пресса
10. Оснащение прессов пневматическими подушками и буферами
11. Современные типы прессов для листовой штамповки
12. Планировка и обслуживание рабочего места

Раздел третий
Типовые кончтрукции штампов, их узлов и деталей

Глава I. Тилевые схемы штампов
1. Технологические типы штампов
2. Конструктивно-эксплуатационные типы штампов

Глава II. Типовые узлы и детали штампов
3. Типовые детали штампов
4. Типовые конструктивные узлы и детали штампов
5. Типовые технологические узлы и детали штампов
6. Точность изготовления и чистота обработки деталей штампов
7. Материалы для деталей штампов 8. Пластмассовые штампы
9. Стойкость штампов

Глава III. Типовые конструкции штампов холодной листовой штамповки
10. Типовые конструкции разделительных штампов (простого, последователе ного и совмещенного действия)
11. Типовые конструкции формоизменяющих штампов (гибочные, вытяжные, комбинированные)

Глава IV. Проектирование и расчеты штампов на прочность и жесткость
12. Порядок и этапы проектирования
13. Технологичность конструкции узлов и деталей штампов
14. Определение центра давления штампа 15. Расчеты деталей штампов на прочность и жесткость
16. Закрытая высота штампа и пресса


Раздел четвертый

Механизация и автоматизация процессов холодной листовой штамповки

Глава I. Способы автоматизации и механизации листоштамповочного производства
1. Основные способы автоматизация
2. Комплексная механизация и автоматизация

Глава II. Устройства для механизации и автоматизации штамповки
3. Механизация и автоматизация подачи материала и заготовок
4. Механизация и автоматизация удаления деталей и отходов
5. Автоматизация счета, укладки (стапелироваиия) и взвешивания отштампо ванных деталей
6. Автоматизация управления, блокировки и контроля процесса штамповки
7. Автоматические штамповочные линии


Раздел пятый

Основные материалы, применяемые в холоднолистовой штамповке

Глава I. Механические и технологические свойства листовых материалов
1. Механические свойства, выявляемые при испытании листовых маталлов на растяжение
2. Анизотропия листовых металлов
3. Технологические свойства и испытания листовых металлов
4. Указания по технологическому применению листовых метериалов

Глава II. Характеристика листовых материалов
5. Основные материалы, применяемые в холодной листовой штамповке
6. Механические свойства основных листовых металлов



Слисок литературы

Предметный указатель
изготовление
Изготовление штампов


ремонт
Ремонт штампов

заточка
Заточка штампов

изготовление
Холодная штамповка

Раздел 1. Технология холодной листовой штаповки

Холодная штамповка. Романовский В.П.


Глава 1. Разделительные операции

предедущая следующая

3. Резка листового металла штампами

Процесс резания штампами при вырубке, пробивке и других операциях в некоторой степени аналогичен процессу резания ножницами. В данном случае пуансон и матрица являются как бы ножами замкнутой конфигурации, имеющими сопряженные режущие кромки. Однако процессы резания существенно отличаются.

Последовательность процесса вырубки показана на рис.3.

Процесс резания штампами также состоит из трех стадий: упругой, пластической и скалывания.

В первой стадии происходит упругий изгиб металла с легким выдавливанием его в отверстие матрицы. При этом напряжения в металле не превосходят предела упругости.

В пластической стадии происходят вдавливание пуансона в металл и выдавливание его в отверстие матрицы.

Последовательность процесса вырубки
рис.3. Последовательность процесса
вырубки и поверхность среза

Вдавливание вырубного пуансона происходит не по всей торцовой поверхности; а лишь по кольцевому (или иной формы в плане) пояску шириной b. Такое же вдавливание наблюдается и со стороны матрицы. Отпечатки от локализованного вдавливания пуансона и матрицы остаются на вырубленной детали и отходе в виде смятой полоски вдоль контура резания.

В результате локализованного вдавливания пуансона и матрицы возникает круговой изгибающий момент, образованный силами резания, условно представленными на рис.3, I и II равнодействующими нормальных напряжений.

Под действием кругового изгибающего момента заготовка получает пространственный изгиб (выпучивание), при котором с наружной (выпуклой) стороны заготовки возникает напряженное состояние двухосного растяжения, а на внутренней стороне - двухосного сжатия.

Непосредственно под режущей кромкой пуансона создается напряженное состояние объемного сжатия, а над режущей кромкой матрицы - напряженное состояние с напряжениями радиального растяжения. Первое более благоприятно для пластического течения металла, а второе - менее благоприятно и способствует возникновению микротрещин в зоне резания.

К концу второй стадии напряжения вблизи режущих кромок Достигают максимальной величины, соответствующей сопротивлению металла срезу.

В третьей стадии процесса вырубки у режущих кромок матрицы образуются скалывающие трещины (рис.3, III). После дальнейшего погружения пуансона и исчерпывания местной пластичности металла скалывающие трещины возникают и у режущих кромок пуансона (рис.3, IV и V). Эта последовательность скалывания подтверждается тем, что блестящий поясок, соответствующий пластической стадии резания, на отходе значительно шире, чем на детали.

Скалывающие трещины, направленные по линиям наибольших деформаций сдвига (поверхностям скольжения), быстро распространяются на внутренние слои металла и вызывают отделение вырезаемой детали.

Во время первой и второй стадий вырубки скорость погружения пуансона уменьшается; а с начала третьей стадии - резко увеличивается. При дальнейшем движении пуансон проталкивает вырезанную деталь через рабочую шейку матрицы.

При нормальном зазоре между пуансоном и матрицей Z1 поверхности сдвига (линии скольжения), возникающие у режущих кромок пуансона, совпадают с поверхностями сдвига и трещинами, возникшими у режущих кромок матрицы, и образуют общую криволинейную поверхность скалывания (рис.3, а).

При малом зазоре Z2 и большой толщине материала поверхности сдвига, идущие от кромок пуансона, не совпадают с поверхностями сдвига, возникшими у кромок матрицы. Оставшаяся кольцевая перемычка перерезается при дальнейшем погружении пуансона с возникновением новых скалывающих трещин, причем на детали образуются надрыв и двойной срез с протянутым заусенцем (рис.3, б). Поверхность отверстия получается сравнительно гладкой, лишь в нижней части образуется небольшой шероховатый скол. Поэтому, если требуется получить отверстие с гладкими ровными стендами, следует производить пробивку с малым зазором между пуансоном и матрицей.

При вырубке с малым зазором твердых материалов двойного среза обычно не получается. В случае очень большого зазора на поверхности образуются рваные заусенцы от затягивания и обрыва металла в зазоре.

После возникновения скалывающих трещин величина изгибающего момента М резко падает, вследствие чего происходит уменьшение кривизны вырубаемой детали, увеличение ее размеров и распор детали в отверстии матрицы.

Металлографические исследования макро и микроструктуры вырубленных деталей показывают, что металл в зоне резания претерпевает значительные структурные изменения и наклепывается. Глубина наклепанного слоя зависит от толщины материала, его свойств и первоначальной структуры, зазора и качества режущих кромок, а также от скорости вырубки.

На рис.4 показано влияние скорости вырубки на форму среза вырубленной детали и на глубину наклепанного слоя при вырубке тонколистовой стали с числом ходов пресса 60, 120, 330 и 450 ход/мм [69].

При небольшом числе ходов пресса (60 ход/мин, рис.4, а) глубина вдавливания пуансона до момента образования скалывающих трещин составляет 64% толщины материала. Пластическая стадия процесса вырубки сильно развита, а наклепанная зона довольно значительна.

Поверхность среза и глубина наклёпанного слоя
рис.4. Поверхность среза и глубина наклёпанного
слоя при вырубке с различным
числом ходов пресса.
Неравномерность деформаций в зоне резания
рис.5. Неравномерность деформаций в
зоне резания (по В.И. Веру)

При увеличении числа ходов пресса до 120 и 330 ход/мин (рис.4, б и в) и повышении начальной скорости вырубки глубина вдавливания пуансона уменьшается соответственно от 50 до 27%. Пластическая стадия процесса значительно уменьшается, в связи с чем уменьшается величина наклепанной зоны металла.

Наконец, при быстроходной штамповке с числом ходов пресса 450 ход/мин (рис.4, г) пластическая стадия и глубина вдавливания пуансона снижается до 14%, наибольшее развитие получает третья стадия процесса-скалывание. Большая часть поверхности среза представляет собой сравнительно ровный скол. Глубина наклепанного слоя невелика.

Локальный характер процесса разделения листовых металлов сопровождается резкой неравномерностью деформаций в зоне резания.

Новые исследования процесса разделения металла методом муаровых полос, выполненные В.И. Бером и Д.И. Суяровым [12], позволяют четко фиксировать границы пластической области и с высокой степенью точности вычислить локальные эллипсы деформации и направления локальных осей для большого количества точек в зоне резания, как показано на рис.5 для одной из промежуточных стадий процесса.

Установлено, что по мере углубления пуансона, происходит изменение границ пластической области и непрерывный рост локальных деформаций, сопровождаемый поворотом главных осей локальных эллипсов.

Локальные пластические деформации могут быть определены также по методу Моравецкого путем нанесения мельчайшей координатной сетки (плотность до 1200 ячеек на 1 мм2) с измерением деформации под микроскопом или по фотоснимку с 400-кратным увеличением [207].

Приводим оригинальные способы резки.

Схемы резки труб и резки скосов на кромках листов
Рис. 6. Схемы резки труб (а) и резки скосов на кромках листов (б)

На рис.6, а показан новый способ разрезки тонкостенных труб, без вдавливания отхода внутрь трубы. Вначале, движением поперечного ползуна с зубчатым резачком в зажатой трубе срезается шлиц высотой h = 2S. Вслед за этим опускающий отрезной пуансон копьевидной формы входит в прорезь трубы и отрезает отход, загибая его наружу. Поверхность среза получается более качественной. Штамп для резки указанным способом приведен в работе [84]. Там же описаны способы криволинейной резки труб и типовые пуансоны для резки профилированных заготовок. На рис.6, б показан новый, внедренный на производстве способ холодной резки скосов на кромках листовых заготовок (Кравец М.Л. А.с.415068). Сущность этого способа заключается в том, что срез кромки (фаски) происходит в результате вертикального перемещения плоского пуансона при одновременном горизонтальном перемещении матрицы. По мере движения штампа происходит постепенное сближение режущих кромок пуансона 1 и матрицы 2. Чистота среза соответствует 6-му классу шероховатости.


предедущая следующая
Клиентам

Доставка
Способы оплаты
Конфиденциальность

Информация

Образец тех. задания для изготовления штампов



Яндекс.Метрика
Ссылки

Видео

the site is created slyders.pro